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Smoothed particle hydrodynamics (SPH) is a modern effective technique of com-
puter simulation in continuous media mechanics. SPH approximations are quite
flexible and allow various constructions. In this paper, contact interaction between
particles is introduced in SPH formulation. The concept is to insert in SPH approxi-
mations of a strength medium the velocity and stresses determined at the contact point
by Riemann solution, instead of mean values between velocities and stresses of basic
and surrounding particles. In this case, there is no need to use artificial viscosity. In a
heat-conducting medium, the contact temperature is determined by the solution of a
thermal discontinuity breakup and heat fluxes in particles are computed with the use
of this temperature. The modified SPH approximations easily pass various standard
tests and are easily realized in multidimensional codes. c© 2002 Elsevier Science (USA)

Key Words: SPH; elastic–plastic; heat conduction; discontinuity; breakup testing;
numerical dissipation; 3D algorithm.

1. INTRODUCTION

Smoothed particle hydrodynamics (SPH) constitutes the meshless Lagrangian approxi-
mation which was originally introduced for computation of discontinuous flows with large
deformations [1, 2]. Applied to mechanics of strength media, the SPH method proved itself
to be an effective and reliable means for modeling hypervelocity impact [3–5].

Since a standard SPH method utilizes a nonconservative form of hydrodynamic equations,
an artificial viscosity has to be introduced for handling oscillations around the shock front.
The artificial viscosity dampens the oscillations at the shock, whereas they may be present
at a contact surface.

In conservative formulation, the oscillations at the discontinuities are eliminated because
fluxes of mass, momentum, and total energy, whose spatial derivatives are involved in
the appropriate equations, satisfy the continuity conditions. In this case, anomalous local
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sources and sinks are not generated in the difference equations. In the difference equations
the fluxes are to be computed at the boundaries of a grid cell. The Riemann solver was
proposed by Godunov [6] as a rule for fluxes computation that provided the monotonicity
of computational algorithms.

Referring to the conservative numerical schemes, Monaghan [7] pointed out that the dissi-
pative terms in SPH can be constructed to be equivalent to those appearing in the Riemann
formulation. He proposed that the dissipative terms in the momentum and total internal
energy conservation equations were to be proportional, respectively, to the differences of
velocity and total internal energy between the two particles multiplied by an effective signal
velocity, which is the speed of two perturbations, one traveling from a basic particle to a
surrounding particle and the other traveling in the opposite direction. The formula for the
signal velocity is designed taking into account the structure of the Riemann solution. Ap-
plied to various test problems, the new SPH equations gave good results in discontinuous
flow description. But in some cases, as in a problem of an impact of two streams, solution
disturbances at the contact surface were observed.

Interaction between basic and surrounding particles, described by the Riemann solver,
can be introduced into SPH equations directly [8, 9]. Setting a point of contact of the two
particles at the line joining them, it is possible to determine an intermediate state of medium
through the particle parameters by means of the Riemann solver. In [9], the intermediate
values of velocity and stresses were used to replace the mean values of corresponding
variables for the two contacting particles in SPH equations. In this case, there is no need to
involve artificial dissipative terms.

An SPH algorithm for heat-conducting media with rapidly changing thermophysical
properties was developed by Cleary and Monaghan [10]. The algorithm uses SPH ap-
proximation of divergence of heat flux and finite difference approximation of temperature
gradients in the basic and surrounding particles. The temperature gradients are determined
through the contact temperature of the particles, which is defined under the condition
of equality of heat fluxes in the particles. This approach works ideally when the heat
diffusion depth exceeds or is on the order of the dimension of the particle during the inte-
gration time step.

In this paper, an alternative method of determination of the contact temperature is con-
sidered. The contact temperature is taken from the solution of an arbitrary temperature
discontinuity breakup. This approach is naturally good when the heat diffusion depth is
smaller than the particle dimension during the time step.

The aim of this paper is to test these modifications of the SPH method in various prob-
lems, including elastic–plastic and heat-conducting media, to examine numerical dissipa-
tive effects and to develop a three-dimensional approximation for elastic, ideally plastic
fluid.

2. SPH EQUATIONS MODIFIED WITH A RIEMANN SOLVER

Hydrodynamic Equations

First we consider ideal compressible fluid. In an SPH approximation, the continuous fluid

is represented by smoothed particles. Each particle carries a mass mi and a velocity
→
Ui and

is characterized by other specific parameters, such as a density ρi , a pressure Pi , and an
internal energy Ei . The particle i is positioned at the point

→
ri .
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There is a variety of SPH versions of fluid dynamics equations (see [2–4]). We select as
the SPH approximations of the flow equations

dρi

dt
=

∑
j

m jρi

ρ j
(
→
Ui −

→
U j ) · ∇i Wi j , (1)

d
→
Ui

dt
= −

∑
j

m j (Pi + Pj )

ρ jρi
∇i Wi j , (2)

d Ei

dt
=

∑
j

m j (Pi + Pj )

2ρ jρi
(
→
Ui −

→
U j ) · ∇i Wi j , (3)

d
→
ri

dt
= →

Ui , (4)

where Wi j is the smoothing kernel (see Section 4) and the subscript j refers to the sur-
rounding particle.

To avoid nonphysical distortions of the solution of (1)–(4), a number of measures are
undertaken. Important is an introduction of the artificial dissipation terms in (2) and (3) and
the artificial pressure term in (2) [11].

When the kernel Wi j is a function of | →
ri − →

r j |/h (h being a smoothing distance), its
gradient is written as

∇i Wi j

( | →
ri − →

r j|
h

)
= W ′

i j

→
ri − →

r j

h| →
ri − →

r j|
. (5)

In this case, (1)–(3) become

dρi

dt
= −

∑
j

m jρi

ρ j h
W ′

i j

(
U R

i − U R
j

)
, (6)

d
→
Ui

dt
=

∑
j

m j (Pi + Pj )W ′
i j

ρ jρi h

→
r j − →

ri

| →
r j − →

ri|
, (7)

d Ei

dt
= −

∑
j

m j (Pi + Pj )W ′
i j

2ρ jρi h

(
U R

i − U R
j

)
, (8)

where

U R = �U
→
r j − →

ri

h| →
r j − →

ri|
. (9)

The structure of Eqs. (7) and (8) inspires us to suggest that each basic particle i exchanges
momentum and energy with every surrounding particle j within the interaction distance 2h.
The particle interaction occurs at the contact surface element which is oriented normally to
the axis R, connecting the coordinates of particles i and j , and intersects with the axis R at
the point Ai j . In Fig. 1, the particles are drawn as spheres with the diameters Di and D j .

The spheres may touch ( j = 1), may not touch ( j = 2), and may intersect ( j = 3). In
any case, we consider the surrounding particle to be in contact with the basic one. For



SPH USING INTERPARTICLE CONTACT ALGORITHMS 361

FIG. 1. Scheme of particle interaction in SPH fluid.

simplicity, the spheres in Fig. 1 are arranged in a plane that actually corresponds to
2D flow.

The position of the contact point Ai j at the axis R may be taken arbitrarily since the
coordinates of this point do not enter the subsequent relationships.

Furthermore, the interaction of particles at Ai j is considered to be equivalent to that
at the contact surface in continuous fluid. In this case, it is possible to determine normal
velocity U ∗R

i j and pressure P∗
i j at Ai j using the Riemann problem solution for an arbitrary

discontinuity breakup. In acoustic approximation, we have

U ∗R
i j = U R

j ρ j C j + U R
i ρi Ci − Pj + Pi

ρ j C j + ρi Ci
, (10)

P∗
i j = Pjρi Ci + Piρ j C j − ρ j C jρi Ci

(
U R

j − U R
i

)
ρ j C j + ρi Ci

, (11)

where C is the sound velocity.
Transition to the modified SPH equation is realized by the substitution

1

2

(
U R

i + U R
j

) → U ∗R
i j (12)

in (6) and (8) and

1

2
(Pi + Pj ) → P∗

i j (13)

in (7). The modified SPH equations are now written as [8, 9]

dρi

dt
= −2

∑
j

m jρi

ρ j h

(
U R

i − U ∗R
i j

)
W ′

i j , (14)
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d
→
Ui

dt
= 2

∑
j

m j P∗
i j

ρ jρi h
W ′

i j

→
r j − →

ri

| →
r j − →

ri|
, (15)

d Ei

dt
= −2

∑
j

m j P∗
i j

ρ jρi h

(
U R

i − U ∗R
i j

)
W ′

i j . (16)

Equations of Elastic Medium Motion

When material strength is taken into account, equations of momentum and energy con-
servation involve stresses. The differential equations of conservation in vector notation are
written as

dρ

dt
= −ρ∇ · �U , (17)

ρ
d �U
dt

= ∂
→
σ x

∂x
+ ∂

→
σ y

∂y
+ ∂

→
σ z

∂z
, (18)

ρ
d E

dt
= →

σ x ∂ �U
∂x

+ →
σ y ∂ �U

∂y
+ →

σ z ∂ �U
∂z

, (19)

where
→
σ x ,

→
σ y , and

→
σ z are the stress vectors applied to surface elements orthogonal to the

x , y, and z axes, respectively.
In this case, standard SPH equations of momentum and energy conservation become

d
→
Ui

dt
= −

∑
j

m j W ′
i j

ρ jρi h

(−→
σ R

i +
−→
σ R

j

)
, (20)

d Ei

dt
=

∑
j

m j W ′
i j

2ρ jρi h

(−→
σ R

i +
−→
σ R

j

)
(
→
Ui −

→
U j), (21)

where
→
σ R is a stress vector applied to a surface element, orthogonal to the axis R directed

from the particle i towards the particle j (i.e., along the vector
→
r j − →

ri , see Fig. 2),

→
σ R = [

→
σ x(x j − xi ) + →

σ y(y j − yi ) + →
σ z(z j − zi )]

1

| →
r j − →

ri|
. (22)

For determination of intermediate values of medium variables resulting from the particles’
contact discontinuity breakup, we introduce the coordinate system RST . The axes S and
T are located in the contact surface (the plane abc in Fig. 2), the axis S being in the plane
zoR. The initial discontinuity is set up in the coordinate system RST as a plane contact

surface separating two regions with uniform quantities
→
Ui , ρi , and

−→
σ R

i at the left side and→
U j, ρ j , and

−→
σ R

j at the right side. This discontinuity breaks up into two waves, longitudinal
and tangential, both traveling to the left and to the right directions along the axis R. The

velocity
−→
U ∗

i j and the stress vector
−→
σ ∗R

i j at the contact surface (point Ai j ) are determined by
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FIG. 2. Coordinate system RTS and stresses at the contact surface abc.

the Riemann solver. In acoustic approximation, we have for the longitudinal wave

U ∗R
i j = U R

j ρ j Cl
j + U R

i ρi Cl
i + σ R R

j − σ R R
i

ρi Cl
i + ρ j Cl

j

, (23)

σ ∗R R
i j = σ R R

j ρi Cl
i + σ R R

i ρ j Cl
j + ρi Cl

i ρ j Cl
j

(
U R

j − U R
i

)
ρi Cl

i + ρ j Cl
j

, (24)

and for the tangential wave

U ∗S
i j = U S

j ρ j Ct
j + U S

i ρi Ct
i + σ S R

j − σ S R
i

ρi Ct
i + ρ j Ct

j

, (25)

σ ∗S R
i j = σ S R

j ρi Ct
i + σ S

i ρ j Ct
j + ρi Ct

i ρ j Ct
j

(
U S

j − U S
i

)
ρi Ct

i + ρ j Ct
j

, (26)

U ∗T
i j = U T

j ρ j Ct
j + U T

i ρi Ct
i + σ T R

j − σ T R
i

ρi Ct
i + ρ j Ct

j

, (27)

σ ∗T R
i j = σ T R

j ρi Ct
i + σ T R

i ρ j Ct
j + ρi Ct

i ρ j Ct
j

(
U T

j − U T
i

)
ρi Ct

i + ρ j Ct
j

, (28)

where Cl and Ct are the velocities of longitudinal and transversal waves in a medium,
respectively.

In (23)–(28), all quantities are calculated with respect to the coordinate system RST , i.e.,
�U = U R

→
eR + U S

→
eS + U T

→
eT and

→
σ R = σ R R

→
eR + σ S R

→
eS + σ T R

→
eT . The formulae of a quan-

tity transformation from the frame xyz to the frame RST and the reverse are given in
Appendix B. Now the standard equations of motion (20) and energy (21) can be modified



364 PARSHIKOV AND MEDIN

by substitution,

1

2
(
→
Ui + →

U j) →
−→
U ∗

i j (29)

and

1

2

(−→
σ R

i +
−→
σ R

j

) →
−→
σ ∗R

i j . (30)

In (29) and (30), the vectors
−→
U ∗

i j and
−→
σ R∗

i j are calculated in the coordinate system xyz and
have to be recomputed in terms of quantities (23)–(28). This is done in Appendix B.

As a result, the modified SPH equations of momentum and energy conservation come to

d
→
Ui

dt
= −

∑
j

2m j W ′
i j

ρ jρi h

−→
σ ∗R

i j , (31)

d Ei

dt
=

∑
j

2m j W ′
i j

ρ jρi h

−→
σ ∗R

i j (
→
Ui −

−→
U ∗

i j ). (32)

The equation of mass conservation is presented by (14).
The equations of conservation should be supplied with constitutive equations. The equa-

tions for elastic, ideally plastic media, and their SPH approximations when needed, are
presented below and in Appendix A.

3. HEAT CONDUCTION SPH EQUATIONS

Fast Heat Diffusion

The energy equation limited only by accounts of heat conduction is

ρ
d E

dt
= −div �q, (33)

where �q is the heat flux vector. The SPH approximation of (33) is written as

d Ei

dt
=

∑
j

m j W ′
i j

ρ jρi h

(
q R

i + q R
j

)
, (34)

where

q R = �q
→
r j − →

ri

| →
r j − →

ri|
.

The Fourier’s law SPH approximation could close the energy equation (34). As a better
approach, discussed in [10], finite differences are used in the following analysis.
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For calculation of q R
i and q R

j , Cleary and Monaghan [10] proposed the procedure using
the contact temperature T ∗

i j of basic and surrounding particles. According to that, we have

q R
i = −λi

T ∗
i j − Ti

�ri
, (35)

q R
j = −λ j

Tj − T ∗
i j

�r j
, (36)

where λ is the heat conductivity.
The contact temperature T ∗

i j and �ri and �r j are defined by Cleary and Monaghan [10]
under conditions

q R
i = q R

j , (37)

�ri = �r j = 1

2
| →
r j − →

ri|. (38)

In this case, T ∗
i j is found as

T ∗
i j = λi Ti + λ j Tj

λi + λ j
. (39)

Finally, we come to the Cleary and Monaghan [10] SPH heat conduction equation [10]

d Ei

dt
= −

∑
j

m j W ′
i j

ρ jρi h

4λiλ j

λi + λ j
(Tj − Ti )

1

| →
r j − →

ri|
. (40)

This equation has been successfully tested for various analytical solutions including multiple
materials with substantially different conductivities and specific heats [10].

Referring to the conditions (37) and (38), one can conclude a priori that Eq. (40) would
work perfectly when heat diffusion is accomplished at the smoothing distance h during the
time step �tn , which is expressed by the condition [10]

�tn = βρCV h2/λ, (41)

where CV is the specific heat capacity. The integration proved to be stable, in various tests
[10], if β ≤ 0.15.

Slow Heat Diffusion

When the heat diffusion is not fast enough, so that the diffusion depth (skin layer) does
not exceed the smoothing distance, it is better to define the contact temperature T ∗

i j in terms
of transient heat transfer between basic and surrounding particles. This process is described
by the solution of the problem of temperature discontinuity breakup. The one-dimensional
Fourier equation with discontinuous at x = 0 thermophysical properties is solved for initial
conditions T (x, 0) = Ti , x < 0 and T (x, 0) = Tj , x > 0. The temperature distribution is
given by [12]

T − T ∗
i j =

{
(T ∗

i j − Ti )erf x
2
√

ai t
, for x < 0,

(Tj − T ∗
i j )erf x

2
√

a j t
, for x > 0,

(42)
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where T ∗
i j is the contact temperature at x = 0,

T ∗
i j = λi Ti + λ j Tj

√
ai/a j

λi + λ j
√

ai/a j
, (43)

and

a = λ

ρCV
(44)

is the thermal diffusivity.
The characteristic distances in heat fluxes (35) and (36) are proportional to thermal skin

layers in the particles i and j . Their magnitudes vary in time. The limiting values of �ri

and �r j providing stability of integration satisfy the following condition:

�ri + �r j = |→ri − →
r j |, �ri/�r j = √

ai/a j . (45)

When the condition �ri + �r j ≤ |→ri − →
r j | takes place, an increased numerical diffusion

occurs at the same time step.
Combining (43) and (45) with (34)–(37), we obtain the SPH heat conduction equation in

the form

d Ei

dt
= −

∑
j

m j W ′
i j

ρ jρi h
2λiλ j

1 + √
ai/a j

λi + λ j
√

ai/a j
(Tj − Ti )

1

|→
r j − →

ri |
. (46)

When the thermal diffusivities of particles i and j are equal, Eqs. (46) and (40) coincide,
as the contact temperatures in (43) and (45) are equal as well.

4. 1D NUMERICAL TESTS

In tests, we use the cubic spline kernel [4]

Wi j =




(1 − 1.5φ2 + 0.75φ3)/N for 0 ≤ φ < 1

0.25(2 − φ)3/N for 1 ≤ φ < 2

0 for 2 ≤ φ

, (47)

where φ = | →
xi − →

x j|/h, N = 1.5h for 1D flow, N = 0.7πh2 for 2D flow, and N = πh3 for
3D flow. The smoothing distance h is calculated according to [3] as

h = 0.5(Di + D j ), (48)

where D = m/ρ for a 1D problem.

Riemann Problem in Perfect Gas

The equation of state is

P = (γ − 1)ρE . (49)
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FIG. 3. Solution of Riemann problem in a perfect gas. Velocity (a), pressure (b), density (c), and specific
energy (d) against distance. Solid line presents analytical solution.

The discontinuity is initially set up at x/L = 0.5 (L being the computational interval) by
pressure and density jumps. The values of the quantities are P1 = 3 × 104 Pa, P2 = 1 ×
104 Pa, ρ1 = 1.5 × 103 kg/m3, ρ2 = 1.2 × 103 kg/m3, and U1 = U2 = 0. The specific heat
ratio is γ1 = γ2 = 3. The computational interval is L = 0.1 m and contains 200 particles.

In Fig. 3, the analytical and numerical solutions are drawn for dimensionless velocity,
pressure, density, and energy, at the time 0.004 s. The solid line corresponds to the analytical
solution. The shock and the contact surface are simulated well. The rarefaction wave is rather
stretched.

Riemann Problem in Elastic, Perfectly Plastic Matter

The equation of state is taken as

P = K (ρ − ρ0)/ρ0, (50)

where K = const is the isothermal bulk modulus.
Following the Wilkins methodology [18] for the condition of uniaxial strain, the deviatoric

stress Sxx is computed from the strain rate

d Sxx

dt
= 2G

dexx

dt
. (51)

The SPH approximation of the strain rate is

dexx
i

dt
= −4

3

∑
j

m j W ′
i j

ρi h

(
U ∗x

i j − U x
i

)
, (52)

where U ∗x
i j is determined by formula (23) with superscript R changed to x .
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FIG. 4. Solution of Riemann problem in elastic, perfectly plastic medium. Normal stress against distance.
Solid line presents analytical solution.

At plastic flow submitted to the von Mises criterion, the computed value of Sxx is corrected
by factor 2Y0/3Sxx .

The initial discontinuity at x/L = 0.5 is set up as σ xx
1 = 4 GPa, σ xx

2 = 0, ρ1 = ρ2 =
2700 kg/m3.

The properties of aluminum are the following: K = 73 GPa, G = 23 GPa, and Y0 =
0.3 GPa.

The length of the computational interval is 0.1 m; the number of particles is 200. In Fig. 4,
the results of computations are presented at the time 5 µs. The solid line is the analytical
solution. It is seen that the numerical solution does well at maintaining the amplitude and
velocities of elastic and plastic waves.

Heat Conduction

The solution of temperature discontinuity breakup (42) is used for testing the SPH ap-
proximation (46). This test was proposed by Cleary and Monaghan [10] and successfully
applied to the approximation (40).

The computational segment of 0.1 m is composed of two different materials contacting
each other at x/L = 0.5. The thermophysical properties of material are given in Table I.
The number of particles is 100. The initial conditions are T (x, 0) = 300 K, x/L < 0.5,
and T (x, 0) = 1000 K, x/L > 0.5. At the segment boundaries, the condition of zero heat
flux is fixed, and at the contact point, the continuity of temperature and heat fluxes is
kept up. Four pairs of materials were considered: aluminum–aluminum, aluminum–brass,
aluminum–lead, and aluminum–china. The results of the computations are plotted in Fig. 5.

There is satisfactory agreement between the numerical (circles) and analytical (solid
curves) solutions. When two different materials are coming into contact, the contact

TABLE I

Thermophysical Properties of Materials

Material Aluminum Brass Lead China Gas

ρ0, kg/m3 2,700 8,700 11,350 2,500 3.75 × 10−3

Cv , J/(kg · K) 880 380 130 920 5.2 × 103

λ, W/(m · K) 209 85.5 35 1.68 2.3
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FIG. 5. Temperature profiles after temperature discontinuity breakup for (a) aluminum–aluminum at time
t = 2 s, (b) aluminum–brass at time t = 3 s, (c) aluminum–lead at time t = 4 s, and (d) aluminum–china at time
t = 10 s.

temperature follows (43) and the shape of the curve’s left and right branches corresponds
to the values of thermal diffusivity of the material (thermal skin layer).

The computations presented in Fig. 5 were performed for Eq. (46). Equation (40) for all
four cases has fully identical results (the difference in computations cannot be distinguished
graphically). Cleary and Monaghan note [10] that for ratios of thermal diffusivity up to
1000 : 1, Eq. (40) provides good accuracy. The discrepancy might be expected at very
high ratios a1/a2. To illustrate this, the thermal contact of china and gas was computed.
The material data for this pair are given in Table I. The temperature profiles decribed by
Eqs. (40) and (46) at time 4 × 10−9 s (L = 10−4 m) are plotted in Fig. 6. The contact point

FIG. 6. Temperature profiles after temperature discontinuity breakup for china–gas, computed according to
Eqs. (40) (+) and (46) (�). The solid line is the analytical solution.
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FIG. 7. Relative error of temperature computation according to Eqs. (40) (+) and (46) (�). Ta is the analytical
solution.

is set up at x/L = 0.1. In Fig. 7, the relative errors of temperature computation according
to Eqs. (40) and (46) are drawn. Equation (40) gives the maximum error of −0.35 for gas
temperature near the contact point. It should be noted that in this computation the ratio of
thermal diffusivities is taken to be very high, i.e., 2 × 109.

Experience with computations of the modified SPH equations shows that integration is
stable for values of β (41) up to 0.35.

Blast Wave

Since the blast wave results in an extremely severe change of gas parameters, the acoustic
approximation (10)–(11) of the Riemann solver must be replaced by the exact solution of
the discontinuity breakup. For computation of the intermediate values of velocity U ∗R

i j and
pressure P∗

i j , a noniterative Riemann solver [13] was used.
The discontinuity is initially located at x/L = 0.5, and values of gas parameters are

P1 = 30 GPa, P2 = 0.1 MPa, ρ1 = ρ2 = 1.0 kg/m3, and U1 = U2 = 0. The equation of
state is taken for an ideal gas (49) with the specific heat ratios γ1 = 1.3 and γ2 = 1.4. The
computational interval L = 0.1 m contains 200 particles.

The numerical solution is presented in Fig. 8. This is the best case obtained when the
factor 2 in the continuity equation (14) was changed to 1.75. The analytical solution is
shown by the solid line. In the case when the factor 2 is kept, the density in the compression
spike is rather underestimated. There are visible distortions of gas parameter distributions
in both expansion and compression parts of the flow.

In Fig. 9, the solution of the standard equation (6)–(9), in which artifical viscosity terms
according to friction momentum flux density

πi = 20ρi D2
i ε̇i |ε̇i | + 0.5ρi Di Ci ε̇i (53)

are involved, is plotted. The computations were performed using the algorithm described
in Appendix B. It is seen that there are oscillations around the contact interface. The com-
putational work in this case was increased by factor of 7. Some additional measures are to
be taken in order to suppress these oscillations. Substantial dumping of oscillations occurs
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FIG. 8. Solution for the blast wave in a perfect gas computed by the modified SPH.

FIG. 9. Solution for the blast wave in a perfect gas computed by the standard SPH with artificial viscosity
(53).
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when the energy equation is written and approximated in terms of total internal energy
E + 0.5U 2 [7].

5. 2D TEST COMPUTATIONS

In this section, 2D computations are presented with the aim of examining the dissipative
numerical effects in the modified SPH algorithm. The stability of the flow with respect to
unwanted numerical fragmentation is also touched on.

The Impact of Rubber Cylinders

The formulation of this problem is taken from [11]. Two rubber cylinders impact each
other along a generatrix located at the line connecting the centers of the cylinders (normal
impact). The initial data were specified as follows: the external radius is 0.0425 m, the
internal radius is 0.0275 m, the density ρ0 = 1.2 × 103 kg/m3, shear modulus G = 0.22 MPa,
and the sound velocity C0 = 850 m/s, which is involved in the equation of state

P = (ρ − ρ0)C
2
0 . (54)

Before the impact, each cylinder has velocity 50 m/s. Each cylinder consists of three rows
of particles with a total of 135. The results of computations are presented in Fig. 10.
Figures 10a to 10f show times t = 0, 0.5, 2, 5, 10, and 18 ms, respectively. At the impact,
the cylinders are compressed without fracturing. Then they bounce off each other. The
subsequent oscillations are sharply dumped, limited by only one intensive pulsation. This
can be attributed to the large numerical viscosity of the algorithm. The increase of particles
to 1080 did not lead to the cylinder fracture.

Problem of Two Half-Spaces with Zero Physical Viscosity

This test is aimed at demonstration of numerical viscosity of the modified SPH algorithm.
The formulation of the problem is analogous to that of the first Stokes problem. Two half-
spaces that are in contact and initially at rest are suddenly caused to move along the contact
surface with a velocity U x

0 in opposite directions. To observe the only numerical shear
viscosity the liquid is supposed to be nonviscous. 2D flow takes place in the x , y plane.
The x axis is the contact line. The equation of state is taken in the form of (54), where
ρ0 = 2.7 × 103 kg/m3 and C0 = 5.2 × 103 kg/m3 are the properties of aluminum and G = 0
(Y0 = 0) for liquid fluid. The dimensions of the computational region are presented in
Fig. 11. There are 20 × 20 particles of 3.85 × 10−3 m diameter. The velocity U x

0 is equal to
250 m/s.

The evolution of computed flow is shown in Fig. 11. At the initial moment the particles at
y > 0 move to the right with a velocity of 250 m/s, the particles at y < 0 move in the opposite
direction with the same velocity. The heavy curve crossing the coordinate origin represents
the displacement of particles. In case of zero numerical viscosity, this curve should be
piecewise constant with the discontinuity at y = 0. The numerical diffusion makes the curve
continuous. The displacement of particles resembles the real displacement in viscous flow
[14], decribed by (42), where substitution x ⇒ y, λi = λ j , and ai = a j = ν, Ti = −Tj = U x

0
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FIG. 10. Rubber cylinders impacting and bouncing. The phases of compression and expansion are shown at
times (a) 0, (b) 0.5, (c) 2, (d) 5, (e) 10, and (f) 18 ms.

is to be made. Conforming the analytical solution (42) to the curve of Fig. 11 gives an
evaluation of numerical shear viscosity in terms of numerical kinematic viscosity νnum. In
this particular case, νnum = 7 m2/s.

When the artificial viscosity is introduced in standard SPH it is possible to compare
numerical and artificial viscosities. If the artificial momentum flux density is defined as
π

xy
art ∼ αρi Ct

i |
→
Ui − →

U j | and numerical shear stress is evaluated as π xy
num ∼ ρiνnum| →

Ui − →
U j |/

Di , the ratio of numerical and artificial viscosities is π xy
num/π

xy
art ∼ νnum/αCt

i Di . For α = 1
and Ct = 2.9 × 103 m/s, the viscosity ratio is π xy

num/π
xy
art ∼ 0.63.

In computation of shear waves the numerical viscosity causes spreading of a discon-
tinuous front. The physical viscous spreading of the shear discontinuity is evaluated as
δ ∼ ν/Ct . The numerical spreading δnum/Di ∼ νnum/Ct Di for the present conditions is on
the order of one particle.
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FIG. 11. Flow of nonviscous fluid with initial tangential discontinuity of velocity. The initial position of the
particles (a) and their displacement at the times (b) 32, (c) 70, and (d) 99 µs. The heavy curve, corresponding to
Eq. (42), shows the displacement of particles originally positioned at x = 0.

Rotation of an Elastic Plate

An elastic disc plate with a 10-cm radius rotates around the axis crossing its center and nor-
mal to its plane. The plate consists of aluminum particles each with diameter 2.55 × 10−3 m.
The elastic properties of aluminum are given in the previous section (see elastic perfectly
plastic test). Yield stress is Y0 = ∞. The plate is considered to be thin and the stress vector→
σ z (22) is equal to zero.

The computations are performed for the following initial conditions: the disc rotates with
an angular velocity � = 3 × 103 s−1; the stresses are given by the analytical solution [15].

Figure 12 presents the material distribution at various times t = (a) 0, (b) 0.33, (c) 0.65,
and (d) 1.74 ms. At the times (b) to (d), the rotation angle amounts to π/4, π/2, and
2π/3, and the angular momentum decreases as Lz/L0 = 0.64, 0.26, and 0.017, correspon-
dingly.
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FIG. 12. Material distribution in a rotating disc plate at t = (a) 0, (b) 0.33, (c) 0.65, and (d) 1.74 ms.

6. 3D IMPACT SIMULATION

SPH is a convenient and effective method for programming multidimensional equations.
At the moment, there are a number of studies on 3D simulation using SPH [16, 17]. The 3D
algorithm of modified SPH equations for an elastic, perfectly plastic medium is described
in Appendix B. In this section, the impact of a steel cube against a steel plate at different
angles between the projectile trajectory and the target normal is considered.

The projectile cube approaches the target plate with its front face parallel to the plate.
The surfaces of contacting materials are supposed to be absolutely smooth, i.e., tangential
stresses at the material interface are absent:

σ ∗S R
i j = σ ∗T R

i j = 0. (55)

The material properties for the projectile cube are K1 = 176 GPa, G1 = 83 GPa, ρ1 =
7900 kg/m3, γ1 = 2, and Y01 = 0.5 GPa, and for the target plate K2 = 176 GPa, G2 = 83 GPa,
ρ2 = 7900 kg/m3,γ2 = 2, and Y02 = 1.9 GPa. The cube size is equal to 0.01 m; the dimensions
of the plate are 0.005 × 0.0667 × 0.0667 m3. The number of particles is 6 × 6 × 6 for the
projectile and 3 × 40 × 40 for the target. The absolute velocity of the cube is 2000 m/s.
The plate thickness and the projectile velocity are selected to simulate a wide range of
impact events from normal perforation to oblique ricochet. Figure 13 shows normal impact.
The projectile particles are shown as black spheres; the target particles are shown as open
spheres. Figure 13 shows a typical scenario of impact of strength materials, demonstrating
perforation with plastic deformation of the projectile and plug formation of the target
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FIG. 13. Computed evolution of material during normal impact of a steel cube on a steel plate. The phases of
the impact are fixed at the times 0, 10, 20, 40, 60, and 80 µs, successively.

material. At the back face of the plate, the material flows over the edges, forming four
tongues along the cube normal faces.

The oblique impact of an angle of 30◦ is shown in Fig. 14. In this case, the projectile
deformation is more severe and more target material is involved in the flow.

The ricocheting impact occurs at an obliquity angle of 80◦ (see Fig. 15). Computations
show elastoplastic deformations of the materials. The projectile bounces off the target plate.
The propagation of a compression wave is observed in the target plate.

The presented results demonstrate adequate performance of a 3D SPH simulation of
elastoplastic flows based on the interparticle contact algorithm.

FIG. 14. Computed evolution of material during a steel cube oblique impact on a steel plate. The obliquity
angle is 30◦. The phases of the impact are fixed at the times 0, 20, 40, 60, 80, and 120 µs, successively.
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FIG. 15. Computed evolution of material during the ricocheting impact of a steel cube on a steel plate. The
obliquity angle is 80◦. The phases of the impact are fixed at the times 0, 10, 20, 30, 40, and 50 µs, successively.

7. SUMMARY

In SPH media, the basic and surrounding particles are interacting along the line connecting
their centers. Supposing that the particles touch each other at some virtual point of this line,
one can determine the intermediate parameters at this point. The velocity and the stress
vector applied to the surface element normal to the connecting line are given by the Riemann
solver. The intermediate values are inserted in the SPH equation instead of the mean values
of velocity and the stress vector.

The intermediate temperature is found from the solution of a thermal discontinuity
breakup. This solution suggests an evolution of finite difference approximations of heat
fluxes at the interface of the basic and surrounding particles. To keep the numerical diffu-
sion as low as possible, under the condition that the integration is stable, the sum of skin
thermal layers in the particles pair at the time step is taken to be equal to the interparticle
distance. This condition determines the structure of the SPH Fourier equation.

Comparison of the solutions of the two-material thermal contact problem given by the
modified SPH Fourier equation with those of Cleary and Monaghan [10] shows that the
modified algorithm provides better accuracy at very high ratios of thermal diffusivity.

The SPH approximations modified with the use of discontinuity breakup solutions satisfy
various tests. In standards tests of discontinuity breakup in perfect gas, elastic plastic, and
thermal conduction media, the proposed algorithms work well.

In more severe tests, such as blast wave, bouncing of rubber cylinders, shear flow, and
rotation, the modified SPH, technique discloses rather high numerical viscosity. This is the
major concern for further development of this technique.

In multidimensional algorithms for strength media, the stress transformations from the
computational frames of reference to the frame at the interparticle interface and the reverse
are used for computation of the intermediate parameters. This can be accomplished by
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standard software, and stress transformations in the stress deviator corrections can account
for the rigid body rotation. The three-dimensional version of the SPH elastic, ideally plastic
algorithm demonstrates effective and stable performance.

APPENDIX A

Constitutive Equations and Equation of State

The stress tensor is composed of an isotropic part (pressure) and a deviatoric stress tensor

σαβ = −Pδαβ + Sαβ. (A.1)

The elastic deviatoric stress tensor is determined by the constitutive equation

d Sαβ
e

dt
= 2G

deαβ

dt
, (A.2)

where G is the shear stress modulus.
The deviatoric strain rate tensor is defined as

deαβ

dt
= 1

2

(
∂Uα

∂xβ
+ ∂Uβ

∂xα

)
− 1

3
δαβ ∂U γ

∂xγ
. (A.3)

The SPH approximation of (A.2) taking into account (A.3) is

d Sαβ
ei

dt
= 2G

∑
j

m j W ′
i j

ρ j h

[(
Uα

i − U ∗α
i j

)(
xβ

j − xβ
i

) + (
Uβ

i − U ∗β
i j

)(
xα

j − xα
i

)

− 2

3
δαβ(

→
Ui −

−→
U ∗

i j )(
→
r j − →

ri )

]
1

| →
r j − →

ri |
. (A.4)

The elastic stresses are to be corrected regarding rotation of the particle as a rigid body
with the rotation rate

�ω = 1

2
(∇ × �U ), (A.5)

which is approximated as

ωx
i =

∑
j

m j W ′
i j

ρ j h

[(
U z

i − U ∗z
i j

)
(y j − yi ) − (

U y
i − U ∗y

i j

)
(z j − zi )

] 1

| →
r j − →

ri|
,

ω
y
i =

∑
j

m j W ′
i j

ρ j h

[(
U x

i − U ∗x
i j

)
(z j − zi ) − (

U z
i − U ∗z

i j

)
(x j − xi )

] 1

| →
r j − →

ri|
, (A.6)

ωz
i =

∑
j

m j W ′
i j

ρ j h

[(
U y

i − U ∗y
i j

)
(x j − xi ) − (

U x
i − U ∗x

i j

)
(y j − yi )

] 1

| →
r j − →

ri|
.

The rotation rate �ω defines the orientation of the new coordinate system x ′y′z′, frozen in
the body, with respect to the old coordinate system xyz. The direction cosines eα′α of the
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new eigenvectors
→
eα= lα

′α
→
eα are described by the differential equations

dlα
′α

dt
= ( �ω ×

−→
eα′), α = x, y, z, α′ = x ′, y′, z′, (A.7)

and the corrected deviatoric stresses are

Sαβ
ω = lα

′αlβ
′β Sα′β ′

e . (A.8)

For description of elastic, perfectly plastic flow, the Wilkins correction [18]

Sαβ = K p Sαβ
ω (A.9)

is used, where the correction factor K p according to the von Mises yield criterion is

K p =
{

1, for f ≤ 2Y 2
0 ,

Y0
√

2/ f , for f > 2Y 2
0 ,

(A.10)

and f = 3Sαβ
ω Sαβ

ω . The equation of state is taken in the Mie–Gruneisen form with the
reference state defined for compression as the Hugoniot

P =
{

PH + γρ(E − EH ), for ρ > ρ0,

γρE + K (ρ − ρ0)/ρ0, for ρ ≤ ρ0,
(A.11)

where

PH = ρ0C2
aη

(1 − Saη)2
, EH = PHη

2ρ0
, η = ρ − ρ0

ρ
.

The parameters Ca and Sa are the coefficients of the Hugoniot

Us = Ca + SaUp. (A.12)

APPENDIX B

Algorithm for Solution of Elastic, Perfectly Plastic SPH Equations

The algorithm is composed of two major blocks. The first block is designed for computa-
tion of sums entering the right-hand parts of SPH equations. In this block, enclosed cycles
with respect to i and j are used. The second block constitutes a simple cycle performing
time integration of SPH equations. The computational region contains N particles of mass
mi and diameter

Di = (mi/ρi )
1/3. (B.1)

For each basic particle, a surrounding particle is taken according to the smoothing distance

h = 0.5(Di + D j ). (B.2)
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The quantities W ′
i j ,

−→
U ∗

i j , and
−→
σ ∗

i j are calculated for each pair of particles. The distance
between the particles,

| →
r j − →

ri | =
√

(x j − xi )2 + (y j − yi )2 + (z j − zi )2, (B.3)

is used for calculation of the smoothing kernel (47) and its derivative and the direction
cosines of the axis R:

l Rx = x j − xi

| →
r j − →

ri |
, l Ry = y j − yi

| →
r j − →

ri |
, l Rz = z j − zi

| →
r j − →

ri |
. (B.4)

In the smoothing kernel (47), the normalizing factor is N = πh3.
The matrix of the direction cosines of the coordinate system RST is determined through

(B.4) according to the relationship of transition between Cartesian and spherical frames of
reference 


l Rx l Ry l Rz

l Sx l Sy l Sz

lT x lT y lT z


 =




cos ϕ sin θ sin ϕ sin θ cos θ

cos ϕ cos θ sin ϕ cos θ −sinθ

−sinϕ cos ϕ 0


. (B.5)

Transformation of vectors �U and
→
σ R from coordinates x, y, z to coordinates R, S, T is

given by 


U R

U S

U T




k

=




l Rx l Ry l Rz

l Sx l Sy l Sz

lT x lT y lT z




U x

U y

U z




k

, (B.6)




σ R R

σ S R

σ T R




k

=




l Rx l Ry l Rz

l Sx l Sy l Sz

lT x lT y lT z






σ x R

σ y R

σ z R




k

, (B.7)

where 


σ x R

σ y R

σ z R




k

=

σ xx σ xy σ xz

σ yx σ yy σ yz

σ zx σ zy σ zz




k




l Rx

l Ry

l Rz


 , (B.8)

and k = i, j . The intermediate quantities
−→
U ∗

i j and
−→
σ ∗R

i j are computed according to (23)–(28)
and then retransformed to coordinates x, y, z by


U ∗x

i j

U ∗y
i j

U ∗z
i j


 =




l Rx l Ry l Rz

l Sx l Sy l Sz

lT x lT y lT z







U ∗R
i j

U ∗S
i j

U ∗T
i j


, (B.9)




σ ∗x R
i j

σ
∗y R
i j

σ ∗z R
i j


 =




l Rx l Ry l Rz

l Sx l Sy l Sz

lT x lT y lT z







σ ∗R R
i j

σ ∗S R
i j

σ ∗T R
i j


. (B.10)
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The next step is computation of the right parts of SPH equations (14), (31), (32), (A.4), and
(A.6).

The second block of the algorithm performs integration of equations of momentum and
energy conservation (20) and (21) and constitutive equation (A.6) by means of explicit time
integration scheme

f n+1
i = f n

i + Fn
i

( →
rn

i

)
�t, (B.11)

where fi = →
Ui , Ei , Sαβ

ei , and Fi is the right part of (31), (32), and (A.4), respectively.
The continuity equation (14) is integrated as

ρn+1
i = ρn

i

(
2 − ε̇i�t

2 + ε̇i�t

)n

, (B.12)

where

ε̇i = −2
∑

j

m j W ′
i j

ρ j h

(
U R

i − U ∗R
i j

)
. (B.13)

Since (A.7) is integrated for each time step �tn at identical initial conditions lα
′α =

δα′α(α = x, y, z, α′ = x ′, y′, z′), we have the following solution for the matrix of the
direction cosines:




l x ′x lx ′ y lx ′z

l y′x l y′ y l y′z

l z′x lz′ y lz′z


 =




1 ωz�t −ωy�t

−ωz�t 1 ωx�t

ωy�t −ωx�t 1


 . (B.14)

The correction of the deviatoric stress tensor needed because of the rigid rotation is made
by matrix multiplication:

[
Sαβ

ω

] = [lα
′α]

[
Sα′β ′

e

]
[lβ

′β]T . (B.15)

The procedure (B.15) is performed by the functions MATMUL and TRANSPOSE integrated
in FORTRAN 90. For the ideally plastic medium, the corrections (A.9) and (A.10) are used.
The pressure is computed by (A.11). The stress tensor is now obtained from (A.1).

Finally, the new position of the particle is calculated as

−−−→
rn+1

i =
→
rn

i +1

2

( −−−→
U n+1

i +
−−→
U n

i

)
�tn. (B.16)

The time step is computed according to the Courant criterion

�t = min


 β Di√

C2
i + (

4Di ε̇
αα
i

)2


 . (B.17)

Multiple computations demonstrated the stable solution to be for β ≤ 0.8.
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